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I. INTRODUCTION

For a few weeks every year college basketball completely captures the interest of the sports fan’s world. The NCAA
basketball tournament starts with 68 teams (as of 2016), and after six rounds of competition ends with one champion, in
a result that is decided entirely on the court. On the Sunday before the tournament begins, the tournament committee
releases the complete bracket, outlining the path that each team will have to take to get to the championship; there
is no re-seeding after the rounds, so the path is set in stone: each team knows who they could possibly play in each
of the rounds. Because of this setup, it has become very popular and fun to make predictions about the tournament
by filling in a bracket, starting from the one the committee has set, and then progressing through the rounds. The
bracket challenge is one of the most prevalent and institutionalized forms of gambling and sports prognostication in
the United States, with office pools, ESPN, CBS, and other sports websites setting up competitions, and one year
H&R Block even offered a billion dollars to anyone who could pick a perfect bracket (a near impossibility).

Based off of this competition, I decided to come up with any way that I could to improve my picks, and so I
decided to write a computer program to make my picks for me. What started off as a very basic program based off of
probabilities, random-number generation, and self-defined categories such as heart and coaching strength, eventually
developed into a more sophisticated set of programs, which could not only make predictions for the bracket in the
NCAA tournament, but also nearly every single college basketball game over the course of the season, the crux of
which is a single equation giving a single number which predicts the likelihood of each team winning the game.

A. The Function

What I want is a fairly simple equation to quickly tell me, for a game involving Team A and Team B, at a set
location (home for A, home for B, or at a neutral location), on a given date (at least a few weeks into the season),
how likely Team A is to win, and how likely Team B is to win.

I want this function to depend solely on the stats to that point in the season, no other information can be input.
So there is no information about individual players, injuries or suspensions to players or coaches, the fact that
it is homecoming, or a huge rivalry, or anything else: just the stats. The function can use any of the basic or
advanced statistics, but I will start by considering only the so-called four factors, defined by Dean Oliver, of offensive
rebounding percentage, effective field-goal percentage, free-throw-made rate, and turnover percentage. Some variant
of points scored and allowed or winning percentage can also be involved: the SRS (or simple rating system) is a likely
candidate for points, and RPI could be used for winning percentage.

The function would weight each of the factors individually so that the more important statistics are given more
weight. Since we must consider the same stats from Team A and Team B, and Team B’s defense will affect Team A’s
offense, and vice versa, it makes sense to have each term be of the form

ws(P (50,4150, 4,dates 3D, B,date; loca) — P(50.B|50,B,date; 5D, A, date, LOCB)), (1)

where wy is the weight for stat s, so x is the predicted offensive stat s for Team X, 30,p, x, date is the (weighted)
average offensive/defensive stat s for Team X on the date of the game, locx is the location of the game for Team X
(if Team A is at home, Team B will be away, and vice versa; Team A and B can also be at a neutral location), and
the P function is a function that makes a prediction for sp x based on the average offensive statistic s for Team X
and the defensive statistic s for its opponent on the date in question.
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B. Weighted Averages and Their Functions

A and B’s offensive and defensive averages in the four factors seem like relatively simple values to computer, but
taking location into account is a bit harder. Certainly, teams win more at home than on the road (66% to 33% in
fact), and probably score more points, but does their effective-field- goal percentage actually change? Or any of the
other statistics? What I would like is to be able to calculate the averages as if each game were played on a neutral
court, and then “deneutralize” the prediction based on location. In a league like the NBA, where each team plays
an equal amount of home and away games (and no games on neutral floors), this might not be necessary, but the
bigger college basketball teams tend to play more home games, especially early in the season, than road games, while
smaller schools have to go on the road a bit more often.

And, as long as we are neutralizing the stats, we should also consider the fact that the level of competition varies
considerably among the 350+ Division-I college basketball teams. Therefore, in order to make our predictions as
reliable as possible, we should try to make the averages take the level of competition into account. This means that
we should weight the performance in a game by how good the opponent was; and we can do this not just on a
team-wide level, but on a stat-by-stat level: if a team is great at rebounding, but not that great at shooting, they will
have significantly different weights for those stats. Grabbing 30% of the available offensive rebounds in a game is very
impressive against a team that generally only allows their opponents to grab 20%, but would considered underwhelming
against a team that gives up 50% on average. However, we also need to consider the level of competition that the
opponent has faced, so we want to take into account the opponents’ opponents. Ideally, we’d go even further, but it is
a time-consuming process and adding another layer multiples the run-time by the approximate number of opponents
for a team in a season, which would be a factor of roughly 30.

So, I will develop a method to produce neutralized and opponent-adjusted stats, which we can then input into the
prediction function. Then I will need to determine the P functions from Equation 1 to predict Team X’s offensive
stats based on its offensive weighted averages, and its opponent’s defensive weighted averages. Then I will need to
determine the weights for each of the four statistics and SRS. Since each of the four statistics and the SRS each have
their own characteristic range of values, I will need to calculate standard deviations for each of them so that they
contribute roughly equally to the function before attempting to determine their relative weights.

C. Summary

Once the final function is determined, and the weights have been set, it is a relatively simple matter to develop a
mapping of the value of the function onto a predicted likelihood of winning for each team using historical data. The
method is relatively simple, containing only four or five terms, while taking into account A’s effect on B, and B’s
effect on A, the location of the game, and the strength of each team’s schedule. It is possible to determine a ranking
for the teams based on their performance against a completely average opponent.

One way to determine how well the function is doing is to make predictions about games in the past (using only
statistics from before the game was played), and comparing the predictions to the actual results. Another way is
look at the betting point-spreads that were available for the game at game-time. The spreads can be converted into
likelihood of winning and vice versa, allowing for direct comparisons.

In this paper, I will first discuss the data that I will be using in the predictions in Section II, as well as explaining
each of the statistics and their formulas in Section III. Then I will go through the process determining the factors
necessary to “neutralize” the statistics in Section IV. Then I will explain how to develop the weighted averages in
Section V. In Section VI, I will outline how to determine the P functions to predict a team’s offensive output based
on its and its opponents weighted averages, as well as how to calculate the necessary standard deviations. Then in
Section VII, I will show how I determined the weights necessary for the main function. In Section VIII, T will show
some of the results of the function, before showing the predictions for the NCAA tournament in years past in Section
IX, and finally concluding in Section X.

II. DATA

The data that I will be using in this analysis is the box-score results from every game played Division-I opponents
in the years from 2001-2015 (note: I refer to seasons by the year in which the season ends, thus the 2014-2015 season
is referred to as the 2015 season), as well as the on-going 2016 season. I will not be using games by Division-I teams
against non-Division-I opponents because I do not have a means of getting the box scores from all of the Division-II
and III schools. Games played against non-Division-I opponents will simply be treated as if they did not occur. Since
I don’t consider win-loss records, I won’t have to determine whether or not to include them in those results.



The box scores for the games include the number of points, field-goals made and attempted, two- and three-
pointers made and attempted, free throws made and attempted, offensive and defensive rebounds, assists, steals,
blocks, turnovers, and personal fouls. Each of these stats are recorded both for the team itself and its opponent.

There are a total of 76,306 games between Division-I schools in the 2001-2015 seasons. I will consider a subset of
those games at each step in the process, and will be sure to make note of what the subset is.

III. THE STATISTICS

As mentioned in the Introduction, the four factors provide the basis of my analysis, along with the simple rating
system or SRS, which accounts for the points-scored for and against. In this section, I will detail each of the four
factors and give the definition of each. Note that each stat is determine for both the team in question and for their
opponents. I will refer to the stats as offensive and defensive therefore, even though this leads to some stupidly named
statistics such as “offensive offensive-rebounding percentage” and “defensive offensive- rebounding percentage”. Since
the stats are always defined in terms of the team in question, those stats mean the percent of offensive rebounds the
team in question got, and the percent of offensive rebounds they gave up on defense (i.e. that their opponents got).

The offensive offensive-rebounding percentage is determined by the formula

orb

_ 2
orb + drbop,’ (2)

oorp =

where orb is the number of offensive rebounds, and drb,y, is the number of defensive rebounds that their opponents
grabbed. Since for each available rebound off a shot taken by a team, either they gather the offensive rebound, or their
opponent grabs the defensive rebound, this stat basically determines what percentage of available offensive rebounds
a team was able to get. The defensive offensive-rebounding percentage is given by
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The offensive effective field-goal percentage is determined by

fgm +0.5 - threem
fga

oefgp = (4)

where fgm is the number of field-goals made by the team in question, threem is the number of three-point field-goals

made, and fga is the number of field-goals attempted. This stat is used in place of the straight field-goal percentage

because it takes into account the fact that three-pointers are worth more than two-pointers, and therefore they should

be given more credit for making them. The defensive stat is determined with the same formula, but for the opponents.
The offensive turnover percentage is given by

otop = (5)

where tov is the number of turnovers, and poss is the number of possessions, where
poss = fga +tov+0.44 - fta — orb (6)

and fta is the number of free-throws attempted. This stat determines what percent of the time the offense turns
the ball over. The defensive stat is determined with the same formula, but for the opponents, and determines how
often the team in question was able to force a turnover. Since turnovers are a bad thing for an offense, this stat is
generally treated as (1 — otop) and (1 — dtop), which is the percentage of time the offense does not turn the ball over,
and therefore lower numbers are bad and higher numbers are good as with the other stats.

The free-throw-made rate is defined as the number of free-throws made per the number of field goals attempted,

_ ftm
ftmr = %, (7)

where ftm is the number of free-throws made. This basically determines how likely a team is to get to the line, as
well as how good they are at making their free throws. The defensive version of the stat is the same, just using the
opponents’ stats.



A. The Simple Rating System

The final stat I will use is a derived stat known as the simple rating system stat, or SRS for short. Its name suggests
that it is a simple stat, but it does have a slight complication. The stat is defined as

1 1
(pts — ptsopp) +

SRS =
Nqames AllGames Nqames

(SRS,), (8)

o=Allopponents

where the first term is the team’s average point differential in all games played (only against Division-I opponents) so
far this season, and the second term is the average of its opponents’ SRS, where the opponent’s SRS does get included
multiple times if they have played multiple games. The opponents’ SRS values are their values on the day the SRS
is being calculated for, not the day that the game was being played. Thus, if Team A plays Team B on January 15
and then again on March 1¢, and we’re calculating their SRS on March 15", Team B’s SRS as of March 15" would
be included in the sum twice.

The complication in the calculation is that we don’t initially know what everybody’s SRS is, and therefore can’t
properly calculate the second term in each equation. The way to get around this is to solve it iteratively. Thus we
start with an initial guess for each team’s SRS, which will just be their average point differential, and then iterate,
meaning recalculate that second term, which is also known as the strength of schedule or SOS, using the value of
SRS for each team that was calculated in the initial round. Then do it again, using the value of SRS for each team
as calculated in the previous round. After a number of iterations the SRS values should start to settle down. That
number is generally between 50-100, so I usually iterate 100 times. Early in the season, the numbers sometimes never
settle due to the small number of games that have been played, but later in the season they become quite stable.

This stat basically says in a game against an average opponent for the season in question, on a neutral floor, Team
A would likely win by whatever value the SRS is; if the value is negative, then it means they would likely lose to
an average opponent. In a game between Team A, with SRS4, and Team B, with SRSp, Team A would win by
SRS4 — SRSp points (or lose if that value is negative).

There are many modifications that can be made to the SRS, from placing a cut-off on blowout wins (e.g. any win
by more than 20 points is simply treated as a win of 20 points), or giving a bonus for winning the game, but they
will not be used in these calculations.

IV. AVERAGES AND NEUTRAL RATIOS

The idea of “neutralizing” statistics is a fairly basic one: see how well home teams do in the stat and compare
that to how teams do in games at a neutral site, and then do the same for away teams, those two ratios can then be
used to neutralize a stats. In practice, I actually sum up all of the games, regardless of location, to get my “neutral”
values, instead of only using games played at neutral locations. The reason that I have chosen to do this is that true
neutral-site games tend to come at the very beginning of the season, and the very end of the season, while there are
almost none in the middle of the season. This has the possibility of skewing the averages and ratios slightly, and so
I have elected to simply sum up all of the values. Since there are an equal number of home and away games total,
these sums should still be neutral, and since there are so many games, they will be quite stable as well. However, this
also means that my sums over all games will be different from those at just neutral sites, and so there will also be a
ratio for neutral-site games.

Ideally, when considering these averages and ratios for a given season, it would be nice to know what the average
will be for that season ahead of time, but that is not possible. The average of all the games played by December 15¢
will likely be significantly different from the average of all games played by March 1%¢, four months later. It does not
make sense to keep recalculating the averages and ratios and then recalculating the weighted averages and so on. So,
it is necessary to guess what the averages and ratios will be. Since the league is fairly stable, it is a safe bet to assume
that the average offensive rebounding percentage this year will be close to the league-wide average last year. We can
assume that we have the statistics for the previous season and thus are able to calculate those averages. However,
consider the data in Table I, which shows the average number of points scored in each year from 2010 to 2015, as
well as the predictions that would have been made for that year using the previous season’s result as a prediction,
as well as a prediction using the previous 5 seasons’ results. While the 1-year data is faster to respond to changes,
like the general downturn in scoring over these six seasons, it allows anomalous seasons, like 2014’s sudden jump in
scoring, or 2013’s dip, to lead to poorer predictions on average. The predictions made using the previous 5 seasons’
data on the other hand may be a bit slower to react to certain trends, but is more stable on the whole, and does not
over-react to anomalous results.



Year ||Average Points|Prediction Using Previous 1 Year|Prediction Using Previous 5 Years
2010 68.6 68.0 68.6
2011 68.4 68.6 68.6
2012 67.4 68.4 68.6
2013 66.9 67.4 68.3
2014 70.2 66.9 67.9
2015 66.9 70.2 68.3

TABLE I. The average number of points scored in a year compared to predictions made using the previous 1 seasons’ games, as
well as just the previous 5 seasons. The advantage of using a single season is that it can react faster to trends, like the obvious
downward trend for scoring over the past six seasons, as in 2013, where the 5-year prediction is not coming down as fast as
the 1-year prediction. However, the disadvantage is that single-season anomalies, like 2014’s sudden scoring burst, can lead to
significant deviations from the best prediction. I have elected to use the 5-year averages to predict each season because of the
accuracy and stability it provides.

When generating the averages and ratios, I consider every game between Division-I schools in the 5 years prior to
a season. Thus, for the 2016 season, I will use the years 2011, 2012, 2013, 2014, and 2015.

The averages for the simple, counting statistics, like points scored, field goals made and attempted, and the like,
are the simple averages, the sum divided by the number of games

Z Sm/a

n

gm/a =

9)

where n is the number of games in the sum. For percentages, the average is

Y. 5m
Sy = , 10

p Z Sa ( )
where 5, is the the average percentage of stat s, and s,,/, is the number of makes/attempts for stat s, and the sums
are over all games.

For the ratios, I have four different sums, one over all home games, one over all road games, one over all neutral-site
games, and one over all games regardless of location. The ratios are then defined to be

s o gm/a/p,total
Tm/a/p,loc - gm/a/p loe ) (11)

s
m/a/p,location

is thus only necessary to multiply a stat by the proper ratio.

Table II shows the averages and neutral ratios for each year from 2003-2016 calculated using the 5 seasons previous
to the season in question, with the exception of the 2003, 2004, and 2005 seasons, which were calculated using only
2, 3, and 4 seasons respectively since I only have the box scores for all games going back to the 2001 season.

where r is the average makes/attempts/percentage for stat s in location loc. To neutralize the stats, it

V. WEIGHTED AVERAGES

The weighted averages that I use in my calculations are supposed to represent the averages for the team as if they
had played each game on a neutral floor against a completely average opponent. The normal average for a stat is
calculated as in Section IV, where one simply sums up the results in each game and then divides by the number of
games played for counting stats, or sums the number of makes and attempts and then divides for percentage stats.
But the weighted averages goes through each game and neutralizes the stats and weights each stat by how good their
opponent is at that stat.

The basic formula for Team A’s weighted average for stat s would read

Ngames
1

_w,o/d o z : o/d s,0/d 5
Sdate,TeamA - n 5 * rloci * _w,d/o ’ (12)
games .. S
i: gamedate<date date,opp;
_w,o/d . . . . .. .
where $;..¢ Teama 15 the weighted average for the offensive/defensive stat s on the indicated date, the sum is over

all games played by Team A before the indicated date, and ngqmes is the number of those games; s?/ 4 is the offen-
/

sive/defensive stat s for Team A in game i, rlsozl “ is the neutral ratio for the offensive/defensive stat s based on the



Year | 507 | 75 ome | Thoaway | Toomeut ||06F 9o |Toit S | 7ol Say |To5d8 || oftmry |rohimr |rolime, [rol it || 0top |76 pome | Thteway | Thineut
20031(/0.341| 0.967 | 1.036 | 0.995 [|0.496 | 0.970 | 1.028 | 1.014 || 0.265 | 0.923 | 1.094 | 0.990 ||0.186| 1.050 | 0.951 | 1.020
20041{0.340| 0.968 | 1.035 | 0.994 [|0.496| 0.970 | 1.028 | 1.016 || 0.262 | 0.923 | 1.092 | 0.999 ||0.186| 1.049 | 0.950 | 1.023
20051({0.339] 0.968 | 1.034 | 0.996 [|0.496| 0.971 | 1.028 | 1.017 || 0.260 | 0.922 | 1.094 | 0.996 ||0.186| 1.050 | 0.950 | 1.023
20061({0.338] 0.969 | 1.034 | 0.996 [|0.497| 0.970 | 1.028 | 1.018 || 0.258 | 0.922 | 1.095 | 0.991 ||0.186| 1.051 | 0.950 | 1.022
20071](0.338| 0.970 | 1.032 | 0.993 [|0.497| 0.970 | 1.027 | 1.019 || 0.254 | 0.921 | 1.095 | 0.998 ||0.186| 1.051 | 0.950 | 1.019
20081(0.336| 0.969 | 1.033 | 0.995 [|0.499| 0.970 | 1.029 | 1.017 || 0.253 | 0.920 | 1.097 | 0.995 ||0.186| 1.050 | 0.950 | 1.019
20091(/0.334| 0.970 | 1.033 | 0.993 [|0.500| 0.969 | 1.030 | 1.015 0.252 | 0.920 | 1.099 | 0.988 [|0.185| 1.051 | 0.950 | 1.019
20101(/0.333| 0.971 | 1.033 | 0.991 [|0.500| 0.969 | 1.030 | 1.016 0.251 | 0.920 | 1.100 | 0.981 ||0.184| 1.050 | 0.951 | 1.021
20111(/0.331| 0.971 | 1.032 | 0.992 {|0.499| 0.969 | 1.030 | 1.013 0.253 | 0.922 | 1.097 | 0.982 ||0.182] 1.049 | 0.951 | 1.020
20121(/0.328| 0.970 | 1.033 | 0.992 [/ 0.498 | 0.968 | 1.031 | 1.013 0.255 | 0.924 | 1.098 | 0.974 ||0.179] 1.047 | 0.952 | 1.024
20131(/0.325| 0.971 | 1.032 | 0.993 [|0.496 | 0.969 | 1.030 | 1.013 0.255 | 0.924 | 1.097 | 0.975 ||0.177| 1.045 | 0.953 | 1.026
20141/0.323| 0.971 | 1.031 | 0.997 {|0.494| 0.969 | 1.030 | 1.012 || 0.255 | 0.925 | 1.097 | 0.971 ||0.175| 1.044 | 0.954 | 1.025
20151(/0.321| 0.970 | 1.032 | 0.997 || 0.495| 0.969 | 1.030 | 1.008 || 0.261 | 0.926 | 1.093 | 0.978 ||0.171| 1.044 | 0.955 | 1.020
2016(/0.317| 0.969 | 1.033 | 0.995 || 0.495| 0.969 | 1.030 | 1.010 || 0.260 | 0.925 | 1.095 | 0.979 ||0.169| 1.042 | 0.957 | 1.019

TABLE II. Predicted averages for each year from 2003-2016, as well as the neutral ratios at home, away, and at neutral sites,
for each of the four factors. Each of the averages and ratios were generated using the 5 seasons previous to the year in question,
with the exception of the 2003, 2004, and 2005 seasons which used only 2, 3, and 4 seasons respectively since I only have
statistics starting from the 2001 season. The ratios are calculated with respect to the averages of all the games, not just those
at neutral sites, which is why the ratios for neutral games are not exactly 1 for each stat.

location of game i; § is the league-wide average for stat s for the season in which the game is being played (as calculated
in Section IV; and Ezluéf!’ippi is the weighted average for the defensive/offensive stat s for Team A’s opponent in game
i. Note that the opponents’ stats are flipped with respect to the Team A’s, defense goes with offense, and offense goes
with defense: this is because we are weighting Team A based on how well it is doing against its opponents abilities to
oppose them; thus if we’re looking at rebounding, we care about Team A’s offensive rebounding abilities compared
to what its opponents usually allow, and about what Team A allowed their opponents to do compared to what they
usually get.

This looks similar to the SRS equation in that we need to calculate 5}, for every team on a given date before we
can calculate any of them. It might be possible to calculate these iteratively like we do for SRS, but I have found it
more reliable to calculate things on the fly by looking at each opponent’s season game by game as well. That leads
us to the formula that I use, which is

Ngames

_w,o/d _ 1 o/d s,0/d S
date,TeamA ~— 5y * rloci Nopp ’ (13)
Ngames .. 1 d/o s,d/o 5
i <date S *r
Mopp . J loc; | TORROPP g 4 6/q
j: <date - sy TEr
OPPOPP . Zdate k

where I sum over the opponents’ games weighted by their opponents (i.e. the opponents’ opponents). While I could
go deeper and weight the opponents’ opponents’ games by their opponents, I have left them unweighted, though I do
still neutralize the stats. All of the sums go only over games that have been played before the date of the weighted
average being calculated. We sum over all games by the opponents and the opponents’ opponents, except for games
played against Team A; this is done so as not to bias the results.

It is necessary to calculate all eight of these stats (the four factors on offense and defense) for each team on every
day of the season in order to make predictions. Practically speaking, I calculate them starting about two weeks into
the season, to allow teams to have played more than one opponent, and when a team’s opponents have not played
anyone else, I treat the weighting factor as 1. We should expect to see the weighting being most important near the
beginning of the season, when teams’ home/road schedules may be a bit skewed and the strength of schedule may be
uneven. Further into the season, the weighted averages should reflect less of the location corrections and more pure
strength of schedule.

Figures 1 and 2 show the offensive and defensive weighted averages for the 2015 North Carolina Tar Heels compared
to their normal averages. North Carolina plays a particularly difficult schedule (the second most difficult in the league
according to SOS) and therefore we should expect to see some significant difference between the two types of average,
and in fact we do see that, although note that each of the averages are shifted by different amounts, and that amount
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FIG. 1. Normal offensive averages (black) and weighted averages (blue) for the 2015 North Carolina Tar Heels for (a) offensive
rebounding percentage, (b) effective field-goal percentage, (c) free-throw- made rate, and (d) turnover percentage. The averages
start two weeks into the 2015 season and run through the beginning of the NCAA tournament. The red line is the predicted
league average for the 2015 season. North Carolina is in the ACC and plays a difficult non-conference and conference schedule,
therefore they tend to play good teams and so their stats are more impressive than they might seem looking only at the normal
averages. Note that each stat gets its own weighting, thus they get a big bump in effective field-goal percentage because they
play a lot of teams that are good at guarding against that, while their turnover percentage is nearly unchanged with the
weighting. Their defensive stats can be found in Figure 2.

can evolve throughout the season. The difference between the two for the offensive effective-field-goal percentage
indicates that they have been playing against teams that generally hold their opponents well below the average
(which is indicated by the red line on the graphs), while their offensive turnover percentage is nearly unchanged,
indicating that the teams they’ve played during the season have been just average at forcing turnovers. The data
for the defensive free-throw-made rate clearly shows how the weights can evolve throughout the season, going from a
very significant difference early on to nearly no difference at the end of the season.

Similar plots can be viewed for a wide variety of teams, those with fairly easy schedules, those with mediocre
schedules, and those with a schedule that varies drastically throughout the season (many small-conference teams play
very difficult early schedules that get significantly easier once conference play starts), and they all accurately reflect
the changes throughout the year, though do note that the difference between the normal and weighted averages always
represent how good their opponents were at that particular stat, not how good they are in general.

VI. WEIGHTED AVERAGE FUNCTIONS AND STANDARD DEVIATIONS

Now that we have developed the method for calculating the weighted averages it is useful to consider what happens

when a team, Team A, with a weighted average in an offensive stat s, call it EX’O’C f plays a team, Team B, with the
corresponding defensive stat Eg’def . Obviously, in the real world anything can happen, but what I’'m looking for is

what would happen on average in this situation.

It makes sense to think of this in terms of the difference between the two weighted averages. If Team A has an
offensive weighted average of 0.350 offensive rebounding percentage and Team B has a defensive weighted average
of 0.350, and they play a large number of times, we would expect to see a range of values for Team A’s offensive
rebounding percentage that is centered around 0.350 with some characteristic spread. Likewise, if Team A and B
have equal offensive and defensive weighted averages, we’d always expect to see the average of the results be close to
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FIG. 2. Normal defensive averages (black) and weighted averages (blue) for the 2015 North Carolina Tar Heels for (a) offensive
rebounding percentage, (b) effective field-goal percentage, (c) free-throw- made rate, and (d) turnover percentage. The averages
start two weeks into the 2015 season and run through the beginning of the NCAA tournament. The red line is the predicted
league average for the 2015 season. North Carolina is in the ACC and plays a difficult non-conference and conference schedule,
therefore they tend to play good teams and so their stats are more impressive than they might seem looking only at the normal
averages. Here we see that they give up less than the league average in effective field-goal shooting, and they have been doing
it against opponents who normally shoot above average, therefore it is even more impressive. The free-throw-made rate shows
that the weighting can change drastically over the course of the season, starting out quite significant and dropping down to
nearly no weighting. Their offensive stats can be found in Figure 1.

that average. But what happens when the two are different?

To study this problem I've looked at each of the four stats separately (I only predict the offensive stats because
predicting the defensive stats would be redundant), trying to determine a function of the difference between Team
A’s offense and Team B’s defense, yielding a multiplicative factor to apply to Team A’s offensive weighted average to
give Team A’s expected offensive performance in that stat. Generally speaking, we should expect this function to be
roughly 1 when the difference is 0, greater than 1 when Team B’s defense gives up more than Team A usually gets,
and less than 1 when Team B’s defense gives up less than Team A usually gets.

In practice I calculated these functions for each year individually by looking at every game in the 5 years preceding
it that I had weighted averages calculated for (2003 on), selecting only the games taking place between December 15t
of that season and the start of the tournament (to avoid wonky weighted averages early in the season, and because I
don’t calculate weighted averages throughout the tournament). For each game I determined a bin based on Team A’s
offensive weighted average for the given stat and Team B’s defensive weighted average for that stat. I also recorded
Team A’s actual neutralized offensive stats in that game with respect to its weighted average going into the game.
I then looked at each bin and and calculated the difference between the weighted averages and the average ratio of
actual game performance to weighted average. This led to multiple values, with corresponding standard deviation, at
nearly every possible value of the difference between the two (the max difference were usually on the order of 10%,
with smaller differences being much more common), so I took the weighted average of those values and calculated a
corresponding error, following the methods of Taylor [1]. I then graphed these values, as you can see in Figure 3, and
saw that all four of the graphs looked like they could be very neatly fit with a linear function, and did so. These four
linear functions are then used as my function to predict Team A’s offensive performance given Team A’s offensive
weighted average before the game and Team B’s defensive weighted average (i.e. those functions needed in Equation
1.
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FIG. 3. The weighted average functions for the 2015 season, relating a multiplicative factor for Team A’s offense to the difference
between the weighted averages for Team A’s offensive stat s, and Team B’s defensive stat s, for (a) offensive rebounding
percentage, (b) effective field-goal percentage, (c) free-throw-made rate, and (d) turnover percentage. Each point on the plots
is the average of all of the games played with that difference in the statistics, where the factor on the y-axis relates how well
the teams with that difference did in those games with respect to their actual weighted average going into the game. The error
bars are related to the standard deviations of the averages of the games.

Thus we can say that

sw.of f _ zw.def
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is our weighted average function for each stat s, where Par(0) is the x-intercept of the calculated function and Par(1)
is the slope, and the entire result is divided by the neutral ratio to deneutralize it, that is, to put it in the appropriate
location for the game for Team A. Each of Team A’s four offensive stats for the game can then be predicted once we
have these functions, and obviously Team B’s stats can be predicted for the game by simply reversing Team A and B
in the above functions (so we consider Team B’s offense and Team A’s defense.

Looking at Figure 3, it is clear that some of the slopes are more pronounced than others, which you may also
note by looking at Table III, which gives the weighted average functions for every season from 2005-2016. The
free-throw-made rate and the turnover percentage stats are clearly more affected by differences in defense than the
offensive rebounding and especially effective field-goal percentages. This indicates that teams that teams that thrive
on shooting are not very likely to be affected by a good defense, but that defense is much more important when it
comes to forcing turnovers and getting chances from the free-throw line.

VII. THE GAME FUNCTION

Now that we have the weighted averages and the functions to predict game performance for each team based on
these weighted averages, all that we have left to do is to determine the weights for the game function. Fully written



Year ORP function EFGP function FTMR function TOP function
2005 0.988 - 1.235%x 1.005 - 1.021*x 0.965 - 2.293*x 0.946 - 2.971*x
2006 0.996 - 1.299*x 1.010 - 0.993*x 0.981 - 2.244*x 0.947 - 2.118*x
2007 0.992 - 1.255%x 1.010 - 0.996*x 0.984 - 1.973*x 0.948 - 2.091*x
2008 0.993 - 1.228*x 1.009 - 0.987*x 0.993 - 2.027*x 0.942 - 2.006*x
2009 0.994 - 1.308*x 1.008 - 0.938*x 0.995 - 2.060*x 0.942 - 2.390*x
2010 0.993 - 1.278%x 1.007 - 0.935*x 0.989 - 2.119*x 0.945 - 2.588*x
2011 0.989 - 1.121*x 1.006 - 0.953*x 0.982 - 2.185*x 0.944 - 2.603*x
2012 0.988 - 1.158*x 1.007 - 0.934*x 0.984 - 2.063*x 0.945 - 2.564*x
2013 0.988 - 1.250*x 1.007 - 0.934*x 0.976 - 1.914*x 0.947 - 2.908*x
2014 0.989 - 1.184*x 1.008 - 0.911*x 0.974 - 1.951*x 0.948 - 2.824*x
2015 0.989 - 1.233*x 1.005 - 0.968*x 0.971 - 1.873*x 0.949 - 2.945%x
2016 0.990 - 1.223*x 1.008 - 0.994*x 0.963 - 1.959*x 0.948 - 3.178*x

10

TABLE III. Weighted average functions for each year from 2005 to 2016. The data for each year is the previous 5 seasons’
data, with the exception of 2005, 2006, and 2007, which use the previous 2, 3, and 4 seasons’ data since I only have weighted
averages calculated back to 2003. The x-intercepts for the offensive rebounding percentages and effective field-goal percentages
are very close to 1 indicating that equally-matched teams will lead to a factor of 1; but the free-throw-made rate and turnover
functions have an intercept below 1, indicating that evenly-matched teams will lead to the team performing worse than usual,
this may be an indication that something is wrong, or simply that the defense has an advantage when the teams are evenly
matched.

out the game function is
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where each of the five terms in the equation is given a weighting factor, ws, and the term itself is the difference
between the predicted offensive production for the two teams, based on their weighted averages on the date of the
game and the location, and each term is divided by the standard deviation of term as measured in the years which
will be used as data, indicated by the o gqte, where the date simply implies that we are using the standard deviations
for the correct year. Dividing by the standard deviations is done to ensure that each term contributes roughly equally
on average before weighting is applied, otherwise the relative strength of the weights could not be assessed and the
turnover rate, which is generally around 20% would get dominated by the effective field-goal percentage, which is
generally near 50% and so on. I have included a term for the SRS although we will calculate the weights for just the
four factors, with wggrg forced to 0, before allowing it to vary freely.

The results of this function are pretty easy to understand: if the value is positive, Team A is favored to win; if the
value is negative Team B is favored to win, and the larger the absolute value of those numbers is, the more likely the
team is to win. The function is symmetric, meaning that if you plug in Team A and Team B on a given date and get
a gameScore of x, you will get -x by reversing the teams, i.e. having Team B play Team A on the same date. Once
the weights have been determined, it is possible to develop an approximate mapping of gameScore onto likelihood of
winning, which we will do later in this section, but for now just remember that larger values for gameScore indicate
a higher likelihood of winning. A gameScore of 0 would mean the game is a complete toss-up: 50/50% likelihood of
either team winning.
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A. Determining the Best Weights

The process for determining the best weights to use is to create a function using the value of Equation 15 and
which also reflects what percentage of games are predicted correctly using this set of weights and then maximize it.
The function I have used (and it may not be the best one, but it works well enough for me) is to simply count up the
number of correctly picked games and divide the result by the total number of games analyzed. This gives a winning
percentage for the games with this particular set of weights, and then you try to maximize that result. In practice, I
actually minimize the negative of that winning percentage, since minimization techniques are more common.

I use the MIGRAD fitter from the TMinuit package of the statistical analysis software program called ROOT to
run my fits. As with most everything else, I use 5 seasons worth of games as my data for the fits (except when not
available). T only include games from the 1% of December until the beginning of the tournament. I also include only
one version of each game; that is, I include Team A vs Team B, not Team B vs Team A. Since the game function
is symmetric, these would just give me the same information while doubling the number of games to be processed.
I have ensured this by requiring that Team A’s name be greater than Team B’s name lexicographical. I usually use
about 500 completely random starting positions for the 4 (or 5 depending on if I'm including SRS) variables and
then choose the set of weights that gave the best overall winning percentage. The fits were completely unbounded,
although my starting values were always between 0 and 1, and the final results are always normalized for ease of
determining the relative importance of the weights. Negative weights are possible and expected for certain terms (like
the turnover percentage); when normalizing, I consider the absolute value of those terms.

B. Weights Without SRS

Table IV displays the best-fit weights, where I force wggrs to be zero, for each year from 2007 to 2016, along with
the winning percentage achieved by the fit with those weights, and the actual winning percentage achieved by using
those weights on the games in the years they were predicting (which will be discussed later). Notice that the weights
for FTMR and TOP are negative, indicating that it is generally bad to have higher values of these stats than your
opponent: this makes complete sense for the turnover rate, as turnovers are in fact bad, but I'm not sure exactly why
it would be bad to have a higher free-throw-made rate than your opponent, but that’s why I run the fits instead of
just guessing at the values myself.

Looking at the fit values for the weights, it is interesting to note that the relative ordering of the importance of the
stats is very similar in each of them, with effective field-goal percentage being the most important with nearly half the
weight in each year, followed by offensive rebounding percentage and turnover percentage, which are relatively similar
in importance, and then lastly by the free-throw-made rate. It should be noted that Dean Oliver, who originally
identified the four factors assigned them the relative importance of EFGP (40%), TOP (25%), ORP (20%), FTMR
(15%), which is not that terribly different than some of the weights that I determined, although he did not allow for
year-to-year variation [2].

Also note that the fit winning percentage is fairly stable over the years at being able to predict approximately 70%
of the games correctly in the fit seasons simply based on their stats.

C. Weights With SRS

The previous results were obtained by looking only at the four factors. It is impressive that we are able to predict
70% of games correctly using only these four statistics and absolutely no reference to a team’s winning percentage
or even a reference to the number of points they scored. However, there are other ways of making predictions for
the victor in a game, and we have already discovered one of them in the SRS. As discussed in Section III A the SRS
values can be used to make predictions about a game as well. If Team A’s SRS is greater than Team B’s, then Team
A should be favored to win, and vice versa. Over the period of 2007-2015 this method correctly picked the winners
of games at a rate of 0.705, just slightly better than the 0.702 that the gameScore method produced.

As has already been seen in Equation 15, we can include the SRS with its own weighting factor into the gameScore
function. Doing so, and then refitting the data using the same method as above, we obtain the weights listed in Table
V. The SRS weight generally settles near 50% of the total weight, while the others fall into a similar dominance
structure that they had when wgrg was 0. Interestingly, while wgp is still negative, as we would expect it to be,
Wo fimyr 18 now mostly positive, and in the case of 2015 very positive at near 11% (or 22% of the total non-SRS weight).
Why it would be consistently negative when wggrg is 0, and then only sometimes negative when wgprg is non-zero is
a mystery to me.
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Year Woorp Woefgp Wo femr Wotop Fit Winning Pct ||Actual Winning Pct
2007 0.2241 0.4228 | -0.0738 | -0.2793 0.706 0.706
2008 0.2223 0.4397 | -0.0671 | -0.2708 0.705 0.701
2009 0.1621 0.4815 | -0.1262 | -0.2302 0.705 0.709
2010 0.2004 0.5090 | -0.0734 | -0.2172 0.705 0.714
2011 0.1473 0.5425 | -0.0929 | -0.2174 0.706 0.695
2012 0.1783 0.4753 | -0.1269 | -0.2195 0.707 0.705
2013 0.2349 0.4926 | -0.1066 | -0.1659 0.708 0.700
2014 0.2252 0.5264 | -0.0578 | -0.1906 0.708 0.691
2015 0.2588 0.5125 | -0.0572 | -0.1715 0.705 0.697
2016 0.1565 0.4950 | -0.1491 | -0.1994 0.700 N/A

TABLE IV. The weights for each of the four factors in each season from 2007-2016, along with the maximum value of the
winning percentage that the fit reached. Each year’s fit used as data the 5 seasons previous to the year in question, except
for 2007, 2008, and 2009, which used 2, 3, and 4 seasons respectively since the earliest season for which I have calculated the
weighted average functions is 2005. Notice that effective field-goal percentage is clearly the most important stat, as it is near
50% for all of the years; offensive rebounding and turnover percentage are the next most important, while the free-throw-made
rate consistently has the smallest weights. Notice also that turnover percentage and free-throw-made rate’s weights are negative,
indicating that high values of these are bad: this makes sense with turnover, as having a lot of turnovers is a bad thing and
forcing turnover is a good thing, but it makes less sense with the FTMR. Combining all of the years together yields an overall
winning percentage of 0.702.

Year Woorp | Woefgp | Woftmr | Wotop | Wsrs || Fit Winning Pct || Actual Winning Pct
2007 0.1841 | 0.1602 | 0.0072 | -0.1469 | 0.5016 0.732 0.720
2008 0.1715 | 0.1642 | -0.0385 | -0.1579 | 0.4679 0.728 0.724
2009 0.1806 | 0.1534 | -0.0083 | -0.1615 | 0.4962 0.728 0.731
2010 0.1711 | 0.1509 | -0.0028 | -0.1638 | 0.5115 0.729 0.737
2011 0.1220 | 0.2698 | 0.0286 |-0.1320 | 0.4477 0.731 0.733
2012 0.0740 | 0.2487 | 0.0394 | -0.1528 | 0.4850 0.733 0.749
2013 0.0827 | 0.2350 | 0.0314 | -0.1580 | 0.4929 0.738 0.726
2014 0.0547 | 0.1853 | 0.0903 | -0.1436 | 0.5261 0.738 0.717
2015 0.0527 | 0.1385 | 0.1194 | -0.1846 | 0.5049 0.737 0.718
2016 0.0589 | 0.2290 | 0.0692 | -0.1301 | 0.5128 0.731 N/A

TABLE V. The weights for each of the four factors plus SRS in each season from 2007-2016, along with the maximum value of
the winning percentage that the fit reached. Each year’s fit used as data the 5 seasons previous to the year in question, except
for 2007, 2008, and 2009, which used 2, 3, and 4 seasons respectively since the earliest season for which I have calculated the
weighted average functions is 2005. Notice that the SRS weight is roughly 0.5 in each of the years, that effective field-goal
percentage is still the most important of the four factors, that the turnover percentage weights are all still negative, and that for
some reason only some of the free-throw-made rate weights are negative. All of the FTMR weights were negative when wsgrs
was 0, and now only some of them are, very curious. Combining all of the years together yields an overall winning percentage
of 0.728.

D. Converting gameScore To a Likely Winning Percentage

As I mentioned earlier, the greater the absolute value of the gameScore, the more likely the team is to win the
game, but we would of course like to have a way to quantify how likely a team is to win. In order to do this I simply
ran through every game in the fit years (i.e. 2011-2015 for the weights used in 2016) and calculated their gameScore
with the best-fit weights, binned those results into two different histograms, one if the gameScore correctly predicted
the winner and one if it was incorrect, and then fit those two histograms with Gaussian functions. Using those two
functions I am able to determine the likelihood of getting the game right or wrong at any value of gameScore, as well
as an associated error; this allows me to successfully convert a gameScore into a likely winning percentage.

Figure 4 shows this function for the year 2016, derived using the games from the years 2011-2015. The function is
in blue, while the function used to determine the associated error at each gameScore is in red. The error is calculated
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Likely Winning Percentage

2 3
gameScore

FIG. 4. Likely winning percentage (black) vs gameScore function for the year 2016 along with the associated uncertainty (red).
This figure shows the conversion from gameScore to likely winning percentage derived by looking at all of the games (between
Dec 1°* and the beginning of the NCAA tournament) in the years 2011-2015. The error is derived using binomial statistics.

using binomial statistics and is defined as [1]

p(1—p)
7=V numGames’ (16)
where p is the likely winning percentage and numGames is the value of the function used to fit the histogram of
correctly predicted games evaluated at that gameScore plus the value of the function used to fit the histogram of the
incorrectly predicted games evaluated at that gameScore. The rise that occurs at the edges occurs because there are
very few games that have gameScores with an absolute value greater than 2, so the denominator is getting smaller.
These errors represent the average error that I have seen among games with a similar gameScore.

VIII. RESULTS

This section works under the assumption that I choose every single game to go according to the most-likely scenario
according to my predictions. This means that if predicting a game between Team A and Team B and the gameScore
is positive, then I pick Team A to win, and if gameScore is negative, then I pick Team B to win. The picks are chosen
this way regardless of the winning percentages. In reality, if I were trying to make picks for a game, I would use all of
the information to help me make an informed choice, which may or may not be the most-likely scenario. Right now,
I would just like to prove that the predictor performs as well as it is expected to do when following the most-likely
choices, and that the likely winning percentages given are accurate.

A. Without SRS

The results of using the gameScore predictions with wsrs = 0, and their associated predicted winning percentages,
can be seen for all games played between December 1% and the beginning of the tournament in the years 2007-2015
in Figure 5, and the actual winning percentages in each year can be seen in Table IV. Overall, this method predicts
70.2% of the games correctly (27041 out of 38530) in the years 2007-2015. The figure also shows that the predicted
winning percentage is a very good predictor of the actual winning percentage, which is a very positive sign. A linear
function was fit to the measured data points and resulted in an intercept of 0 and a slope of 1.03, just barely off from
the ideal value of 1. There is a slight wave to the the values, in that they don’t all fall exactly on the line, but it is
very close.

B. With SRS

The results of using the gameScore predictions with wgrs # 0, and their associated predicted winning percentages,
can be seen for all games played between December 1%¢ and the beginning of the tournament in the years 2007-2015 in
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FIG. 5. (a) Actual winning percentage vs predicted winning percentage for all games played between December 15 and the
beginning of the tournament in the years 2007-2015 using the weights described in Table IV with wsrs = 0 along with (b) the
number of games analyzed in those years as a function of predicted winning percentage. The error bars in (a) are the binomial
standard deviation for y, and the bin width for x. The red line is a linear fit line to those results; ideally the x-intercept should
be 0 and the slope should be 1, the actual values are 0 and 1.03, indicating that the predictions and their associated likely
winning percentages are accurate predictors.
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FIG. 6. (a) Actual winning percentage vs predicted winning percentage for all games played between December 15 and the
beginning of the tournament in the years 2007-2015 using the weights described in Table V along with (b) the number of games
analyzed in those years as a function of predicted winning percentage. The error bars in (a) are the binomial standard deviation
for y, and the bin width for x. The red line is a linear fit line to those results; ideally the x-intercept should be 0 and the slope
should be 1, the actual values are 0 and 1.02, indicating that the predictions and their associated likely winning percentages
are accurate predictors. Note that the number of games is more evenly distributed among the predicted winning percentages
than when wsgrs = 0.

Figure 6, and the actual winning percentages in each year can be seen in Table V. Overall, this method predicts 72.8%
of the games correctly (28061 out of 38530) in the years 2007-2015. Figure 6 shows that these weights also lead to a
very good predictor, where the predicted winning percentage correlates very well with the actual winning percentage,
with an x-intercept of 0 and a slope of 1.01. We also note that the number of games is more evenly distributed among
the predicted winning percentages than when wgrs = 0 which showed more of a humped structure, with fewer games
predicted to be 50/50 than 25/75.

We can see from Table V that predicted winning percentages are significantly higher, by about 3%, and the actual
winning percentages are also 2-3% higher. The winning percentage over all of the seasons from 2007-2015 is 0.728
compared to 0.702, indicating that this is a significant improvement. This set of predictions, with wggrg # 0, will be
my preferred method of making predictions for regular season games.

C. Discussion

It is true that in college basketball the home team wins 66% of their games across the board, and so making
predictions solely based on the location of the game will give you a winning percentage of near 66% (although it
would be unable to make predictions in a neutral-site game which account for nearly 10% of the total number of
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games in a season). It is also true that the method I have presented does take into account location, with the neutral
ratios. However, the effect of the location corrections are rather small, and the predictions fare only slightly worse
when ignoring them altogether; and in any case the extra 4-7%, plus all of the neutral-site games indicate that this
method is performing admirably.

The benefit of having both sets of predictions, with and without SRS, is that they tell two different stories, sometimes
with the same end (i.e. predicting the same team will win), but valuing different statistics. There are some games
where Team A’s SRS may just completely dwarf that of their opponent, and yet they lose. When you look at the
prediction made with wgrs = 0, you may see that statistically the teams were quite similar, but perhaps Team B
played in an easier conference, or Team A played such difficult opponents that simply playing them raised their SRS
significantly, regardless of their actual point differential. If you take two copies of the exact same team and have one
play a very easy schedule and the other play a very difficult schedule, they will end up with wildly disparate SRS
values, but their weighted averages should be similar because it is designed that way.

The SRS method also doesn’t allow Team B to influence Team A in any way. Your SRS is your SRS and it doesn’t
matter what your oppoent’s SRS is, it won’t affect yours. The gameScore method allows the two participants to affect
one another via the weighted average functions.

The NCAA tournament has a fair number of upsets every year and coming up with a way to predict them is
important if you want to do well with your bracket. The seeds in the tournament correlate very strongly with the
teams’ SRS values, therefore upsets are almost by definitions going contrary to what the SRS would predict. Even
if the gameScore method with wggrs = 0 only predicts that the game will be closer than predicted by the wgrs # 0
method, that is valuable information. Therefore, especially when it comes time for the tournament, both predictors
should be used.

D. Comparing to Vegas

By way of comparison, the spreads that Vegas provides for the games are related to their predictions for the games.
I say “related to” because the spreads are actually chosen to get a roughly equal number of bets on both sides of the
spread, and so they may be tweaked from what a casino actually thinks the likelihood of a team winning is because
too many people are betting on one side or the other. But, generally speaking, as a completely rough level, if a team
is favored to win, Vegas really is predicting them to win. For the years 2007-2015, in the games for which I could find
a spread, which was about 65% of the games, Vegas’s predictions were right 73.5% of the time, compared to 72.3%
for the wsrs # 0 model looking at the same games. An adjusted SRS model, where a location-based term is added
to the difference to handle home-court advantage yields a 72.4% record. So Vegas is definitely better than me, but
only by a percent or so and they are using a lot more information than I am.

I can turn my likely winning percentages into an approximate spread following a similar process to the one Vegas
uses. It’s a bit complicated as Vegas’s likely winning percentages for each team in a game add up to slightly more
than 100% which is how they ensure they make money, but basically if I take my winning percentage for the underdog
(i.e. the one whose likelihood is less than 50%) and convert that to a spread via a logarithmic function, and then take
the negative of that to get the favorite’s spread, I can get a spread that is on average very close to what Vegas has.
So, if nothing else, this model could be used to set the lines in Vegas!

IX. PREDICTING THE NCAA TOURNAMENT

The original goal of this project, many years ago, was to come up with a way to select a good bracket for the NCAA
tournament, and though the project has evolved since then, it is still an important aspect. The difference between
predicting the tournament and predicting a regular-season game is that the tournament bracket is filled out entirely
beforehand, meaning you cannot use up-to-date statistics for all of the games (the round of 64 games can be up to
date, but the subsequent rounds will have to continue to use those same statistics), and you can’t even be sure who
is playing in each round: Team A may be likely to lose to Team B, but if they instead get to face Team C, they may
favored in the game. Thus, the tournament is completely different beast than the regular season, and that is why it
is always excluded in the above sections.

Assessing the code’s ability to predict the tournament is a difficult thing, because you have to determine what it
is that you are trying to predict: is predicting the eventual champion the most important thing? Or is is getting
the highest number of total games correct? Or is it assessing where possible upsets could occur? Bracket challenges
generally assign a constant, set number of points in each round, say 32, dividing those points based on how many
games there are in each round, thus 1 point per game in the round of 64, 2 per game in the next round, and all
32 for the one championship game. ESPN’s bracket challenge follows that route, though with 320 points per round
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(because having a trailing zero on every number just looks cool I guess), and so that will be the standard I use. Some
challenges award extra points for picking upsets, but ESPN’s does not, and so neither will 1.

An important thing to remember though is that when choosing any individual game, or even a set of games, choosing
the most likely solution is your best bet, however, it is practically an impossibility that every game will fall that way.
As seen in Figures 5 and 6, a prediction with a 65% likelihood will be right about 65% of the time, and wrong 35%.
When you have 63 games, even if all of the games were predicted at 95% likelihood, you’d still expect to get around
three wrong. Games in the tournament run the gamut in terms of predictions, from 50/50 up to above 90% for one
team or the other, so this model is guaranteed to get some games wrong. The real strength of the model is that it can
make predictions for any game we want it to, which means that we can use it, along with some math skills, to predict
the likelihood of each team reaching every round of the tournament, as well as winning it. So that is another way
to assess how well the model is predicting the tournament, and it is in fact very useful for picking a real bracket of
your own that is influenced and informed by this extra information, but is not slavishly devoted to it. Tables VI and
VII show the percent likelihood of each team in the 2015 NCAA tournament reaching each round of the tournament
based on their stats going into the game and using the wgsgrs # 0 method. Kentucky was the most likely champion,
though with only a 16.5% likelihood of winning going into the tournament. The eventual champion Duke won with
a 8.7% likelihood of winning going into the tournament.

Table VIII shows the results of simulating the tournament for each year from 2007-2015, using both the wsrs = 0
model and the wgrs # 0 model, giving the predicted winner and the score that would have been obtained in the
ESPN bracket challenge, as well as the actual winner and the likelihood of them winning according to the two models.
There were three years, 2008, 2009, and 2010, where the wgrs # 0 model correctly predicted the winner, compared
to only one, 2010, where the wgrs = 0 model did. The wgrs # 0 model also tended to do a bit better than the
wsrs = 0 model in points for the ESPN bracket challenge (note that the maximum number of points in that challenge
is 1920; I don’t have historical records for the challenge, but the winner in 2015 scored 1830 points), though there
are some years where the wgrs = 0 model was better, 2007, 2008, and 2011. The wgrs = 0 model tends to spread
out the likelihood of winning among the participants (since it knows nothing about points scored or win-loss records),
while the wsgrs # 0 model gives a higher percentage to a few teams. Thus, we can see that the wggrs # 0 model
gave higher likelihood’s of winning the tournament to every team over the these 9 tournaments (of course the sum
of all likelihoods is still 100% so some other teams are given a lower chance). In every year, except the two years
Connecticut won, the eventual winner was in the top 3 in terms of likelihood to win the tournament for the wggrg # 0
model. Interestingly, in 2012, the actual winner, Kentucky, had a 10.2% chance to win, and the team the model chose
to win, Ohio State, had a lower chance to win at 10.0%.

I have not provided the full predictions for each of these tournaments due to space considerations, but it is nice to
see that the predictions do not fall entirely along seed lines. Since the predictions aren’t given any information about
the seeding, that is not surprising, but it is good to know that it does not simply pick the teams which are perceived
to be better all of the time. We can also see this in that seeds other than the number 1 seeds are sometimes chosen
to be champion, even if they didn’t actually win, see 2012, 2013, and 2014.

X. CONCLUSION

So, the mission seems to have been successful. I was able to derive a fairly simple formula for determining the
likelihood of each team winning a game based solely on their statistics, and then augmented it slightly to include
points in the form of SRS. The results are very similar to what the Vegas spreads for the games indicate that they
predict, and they are good indicators of the teams’ actual likelihood of winning in those games.

The two different methods show some different information and highlight some different areas, while each giving
accurate predictions.

There is definite room for improvement and more work in the future. I could consider using a different number
of years at each step along the way, 5 seems like a nice compromise, but looking a more and fewer years might be
worthwhile. T could consider using only a set number of games when weighting the statistics, so that games at the
beginning of the year are not used by the time the end of the season is being evaluated; there are many systems
that use a similar idea when weighting stats. I could include stats beyond the four factors, such as assists, steals,
blocks, and so on. The reason I have stuck with only the four is that I am trying not to repeat information: steals
are interesting, but they already contribute to the defensive turnovers percentage for instance. So there is room for
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Round of|Round of| Sweet Elite Final | Champ
(Seed) Team name 64 32 Sixteen | Eight Four Game Champ
Midwest
(1) Kentucky 100.0* 98.4%* 89.8* 80.2%* 66.1%* 33.0 16.5
(2) Kansas 100.0* 83.1% 48.9 25.1 6.9 3.4 1.7
(3) Notre Dame 100.0* 89.1%* 54.4%* 32.1%* 9.9 4.9 2.5
(4) Maryland 100.0* 68.7* 33.1 5.0 1.8 0.9 0.5
(5) West Virginia 100.0* 63.6* 40.4%* 7.5 3.3 1.6 0.8
(6) Butler 100.0%* 57.1% 26.2 13.3 3.3 1.7 0.8
(7) Wichita State 100.0%* 64.4%* 33.6% 16.0 4.1 2.0 1.0
(8) Cincinnati 100.0%* 49.4% 4.9 2.1 0.7 0.3 0.2
(9) Purdue 100.0%* 50.6 5.2 2.3 0.8 04 0.2
(10) Indiana 100.0%* 35.6 13.6 4.6 0.8 0.4 0.2
(11) Texas 100.0%* 42.8 17.6 7.8 1.6 0.8 0.4
(12) Buffalo 100.0%* 36.4 17.4 2.1 0.6 0.3 0.2
(13) Valparaiso 100.0* 31.3 9.0 0.8 0.2 0.1 0.0
(14) Northeastern 100.0* 10.9 1.8 0.3 0.0 0.0 0.0
(15) New Mexico State 100.0* 17.0 3.9 0.7 0.1 0.0 0.0
(16) Manhattan 73.3 1.5 0.3 0.0 0.0 0.0 0.0
(16) Hampton 26.7* 0.2 0.0 0.0 0.0 0.0 0.0
West
(1) Wisconsin 100.0%* 96.7* 84.3* 64.5% | 43.7% | 21.8* 10.9
(2) Arizona 100.0%* 97.3% 66.0%* 49.5% 25.6 12.8 6.4
(3) Baylor 100.0%* 78.6 48.5 17.4 6.0 3.0 1.5
(4) North Carolina 100.0* 85.6* 60.0* 21.8 10.0 5.0 2.5
(5) Arkansas 100.0%* 79.0* 32.0 7.7 2.4 1.2 0.6
(6) Xavier 100.0* 56.3%* 26.6* 7.5 2.0 1.0 0.5
(7) Virginia Commonwealth| 100.0* 33.2 8.0 3.7 1.0 0.5 0.2
(8) Oregon 100.0%* 39.9% 5.2 1.5 0.3 0.2 0.1
(9) Oklahoma State 100.0%* 60.0 9.9 3.7 1.0 0.5 0.2
(10) Ohio State 100.0* 66.8* 25.8 16.5 6.7 3.3 1.7
(11) Brigham Young 57.6 26.8 11.9 3.1 0.8 0.4 0.2
(11) Ole Miss 42.4* 16.9 6.4 1.3 0.3 0.1 0.1
(12) Wofford 100.0* 21.0 3.7 0.3 0.0 0.0 0.0
(13) Harvard 100.0* 14.4 4.3 0.5 0.1 0.0 0.0
(14) Georgia State 100.0* 21.3% 6.5 0.9 0.1 0.1 0.0
(15) Texas Southern 100.0* 2.7 0.2 0.0 0.0 0.0 0.0
(16) Coastal Carolina 100.0* 34 0.7 0.1 0.0 0.0 0.0

TABLE VI. Percent likelihood of each team in the Midwest and West regions of the 2015 NCAA tournament reaching each
round of the tournament. Stars indicate that the team did reach that round. Kentucky was the most likely champion at 16.5%,
but didn’t even reach the championship game. Wisconsin was this side of the bracket’s representative in the championship
game, which they reached having a 21.8% likelihood of doing so.

growth in the future, but I am pretty pleased with the current state of this project.

[1] John R. Taylor, An Introduction to Error Analysis, Second Edition, University Science Books (1982).
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Round of|Round of| Sweet Elite Final | Champ
(Seed) Team name 64 32 Sixteen | Eight | Four | Game Champ
East
(1) Villanova 100.0* 96.4%* 79.0 57.7 35.6 17.8 8.9
(2) Virginia 100.0* 94.4%* 71.2 48.1 27.5 13.8 6.9
(3) Oklahoma 100.0* 90.3* 62.9% 29.5 13.7 6.8 3.4
(4) Louisville 100.0* 87.1%* 61.3% 24.8* 11.3 5.6 2.8
(5) Northern Iowa 100.0* 75.9% 30.4 8.5 2.6 1.3 0.7
(6) Providence 100.0%* 58.5 22.3 7.1 2.2 1.1 0.6
(7) Michigan State 100.0%* 61.1%* 19.2% 8. 7% 3.0* 1.5 0.8
(8) NC State 100.0% | 58.0% 13.1% 5.5 1.7 0.8 0.4
(9) LSU 100.0% | 42.0 7.4 2.5 0.6 0.3 0.2
(10) Georgia 100.0%* 38.9 8.7 3.0 0.8 0.4 0.2
(11) Dayton 51.1%* 21.5% 6.7 1.7 0.4 0.2 0.1
(11) Boise State 48.9 19.9 6.1 1.5 0.4 0.2 0.1
(12) Wyoming 100.0%* 24.1 4.6 0.6 0.1 0.0 0.0
(13) UC-Irvine 100.0%* 12.9 3.6 0.4 0.0 0.0 0.0
(14) Albany 100.0% | 9.7 2.0 0.2 0.0 0.0 0.0
(15) Belmont 100.0* | 5.6 0.9 0.1 0.0 0.0 0.0
(16) Lafayette 100.0% | 3.7 0.6 0.1 0.0 0.0 0.0
South
(1) Duke 100.0%* 95.6%* 76.6* 53.6%* 34.7% 17.4% 8.7*
(2) Gonzaga 100.0%* 94.2% 66.5% 43.3%* 22,7 11.3 5.7
(3) Iowa State 100.0% | 89.7 63.2 312 | 14.1 7.1 3.5
(4) Georgetown 100.0%* 83.7* 34.0 10.5 3.9 2.0 1.0
(5) Utah 100.0% | 78.8% 55.2% 252 | 135 6.8 3.4
(6) Southern Methodist | 100.0* 57.6 21.3 7.0 2.0 1.0 0.5
(7) Iowa 100.0% | 58.0% 20.6 9.7 3.4 1.7 0.9
(8) San Diego State 100.0%* 50.8%* 11.8 4.5 1.5 0.7 0.4
(9) St. John’s 100.0%* 49.2 10.9 4.1 1.3 0.7 0.3
(10) Davidson 100.0* 42.0 12.1 4.9 1.4 0.7 0.4
(11) UCLA 100.0%* 42.3% 13.3* 3.6 0.8 0.4 0.2
(12) Stephen F. Austin 100.0* 21.2 8.6 1.8 0.4 0.2 0.1
(13) Eastern Washington| 100.0* 16.3 2.1 0.2 0.0 0.0 0.0
(14) UAB 100.0* 10.4* 2.2 0.2 0.0 0.0 0.0
(15) North Dakota State | 100.0* 5.9 0.8 0.1 0.0 0.0 0.0
(16) North Florida 56.5 2.8 0.5 0.1 0.0 0.0 0.0
(16) Robert Morris 43.5% 1.6 0.2 0.0 0.0 0.0 0.0

TABLE VII. Percent likelihood of each team in the East and South regions of the 2015 NCAA tournament reaching each round
of the tournament. Stars indicate that the team did reach that round. Duke was this side of the tournament’s representative
in the championship game, and won the championship. They had an 8.7% chance of winning it all going into the tournament.

[2] hitp://www.basketball-reference.com/about/factors.html
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wsrs =0 wsrs # 0 Real wsrs =0 | wsrs # 0
Year |Champion ESPN Points | Champion ESPN Points || Champion Likelihood |Likelihood
2007 |(2) Memphis 810 (1) North Carolina 780 (1) Florida 4.9 8.2
2008 |(1) Memphis 1670 (1) Kansas 1610 (1) Kansas 7.2 13.0
2009 |(2) Memphis 520 (1) North Carolina 1210 (1) North Carolina 2.9 9.9
2010 |(1) Duke 1000 |(1) Duke 1140 (1) Duke 5.3 11.1
2011 |(1) Kansas 500 (1) Kansas 460 (3) Connecticut 1.2 1.9
2012 |(2) Ohio State 850  |(2) Ohio State 1020 ||(1) Kentucky 4.8 10.2
2013 |(3) Florida 510 (3) Florida 850 (1) Louisville 4.9 10.2
2014 |(1) Arizona XXX (4) Louisville XXX (7) Connecticut 1.4 1.6
2015 |(1) Kentucky 650 (1) Kentucky 1120 (1) Duke 4.8 8.7

TABLE VIII. The results of simulating the tournament for each year from 2007-2015, using both the wsrs = 0 model and the
wsrs 7 0 model, giving the predicted winner and the score that would have been obtained in the ESPN bracket challenge, as
well as the actual winner and the likelihood of them winning according to the two models.



